Synthesis of multi-walled carbon nanotubes by combining hot-wire and dc plasma-enhanced chemical vapor deposition
نویسندگان
چکیده
Multi-walled carbon nanotubes (MWCNTs) have been grown on 7 nm Ni-coated substrates consisting of crystalline silicon covered with a thin layer (10 nm) of TiN, by combining hot-wire chemical vapor deposition (HWCVD) and direct current plasma-enhanced chemical vapor deposition (dc PECVD), at 620 -C. Acetylene (C2H2) gas is used as the carbon source and ammonia (NH3) and hydrogen (H2) are used either for dilution or etching. The carbon nanotubes range from 20 to 100 nm in diameter and 0.3 to 5 Am in length, depending on growth conditions: plasma intensity, filament current, pressure, C2H2, NH3, H2 flow rates, C2H2/NH3 and C2H2/H2 mass flow ratios. By combining the HWCVD and the dc PECVD processes, uniform growth of oriented MWCNTs was obtained, whereas by using only the HWCVD process, tangled MWCNTs were obtained. By patterning the nickel catalyst, with the use of the HW dc PECVD process, uniform arrays of nanotubes have been grown as well as single free-standing aligned nanotubes, depending on the catalyst patterning (optical lithography or electron-beam lithography). In the latter case, electron field emission from the MWCNTs was obtained with a maximum emission current density of 0.6 A/cm for a field of 16 V/Am.
منابع مشابه
Study of electron eld emission from arrays of multi-walled carbon nanotubes synthesized by hot-wire dc plasma-enhanced chemical vapor deposition
Multi-walled carbon nanotubes have been grown on 7 nm Ni-coated substrates consisting of 300 lm thick highly n-doped (1 0 0) silicon covered with a di usion barrier layer (10 nm thick) of SiO2 or TiN, by combining hot-wire chemical vapor deposition and direct current plasma-enhanced chemical vapor deposition at low temperature (around 620 °C). Acetylene gas was used as carbon source and ammonia...
متن کاملStudy of electron field emission from arrays of multi-walled carbon nanotubes synthesized by hot-wire dc plasma-enhanced chemical vapor deposition
Multi-walled carbon nanotubes have been grown on 7 nm Ni-coated substrates consisting of 300 lm thick highly n-doped (1 0 0) silicon covered with a di usion barrier layer (10 nm thick) of SiO2 or TiN, by combining hot-wire chemical vapor deposition and direct current plasma-enhanced chemical vapor deposition at low temperature (around 620 °C). Acetylene gas was used as carbon source and ammonia...
متن کاملGrowth of carbon nanostructures upon stainless steel and brass by thermal chemical vapor deposition method
The lack of complete understanding of the substrate effects on carbon nanotubes (CNTs) growth poses a lot oftechnical challenges. Here, we report the direct growth of nanostructures such as the CNTs on stainless steel 304and brass substrates using thermal chemical vapor deposition (TCVD) process with C2H2 gas as carbon sourceand hydrogen as supporting gas mixed in Ar gas flow. We used an especi...
متن کاملFreestanding vertically oriented single-walled carbon nanotubes synthesized using microwave plasma-enhanced CVD
Freestanding single-walled carbon nanotubes (SWCNTs) have been synthesized in a vertical direction, perpendicular to the growth substrate, using applied DC substrate bias in a microwave plasma-enhanced chemical vapor deposition (PECVD) synthesis process. The degree of alignment and spatial density of SWCNTs demonstrate a strong dependence on the magnitude of applied bias, with increased alignme...
متن کاملSingle Walled and Multi Walled Carbon Nanotube Structure, Synthesis and Applications
Carbon Nanotubes have exceptional mechanical and electrical properties. Various methods have been thoroughly investigated for the growth of CNTs. The best and the most commonly used method is Chemical Vapour Deposition (CVD). The various techniques include Reaction Chamber heating, Plasma Enhanced CVD, Hot filament CVD, Microwave CVD. The structural uniformity of carbon nanotubes produced by pl...
متن کامل